
主讲教师：汪红松

数据结构
（C语言版）（第2版）

排序

教 学 内 容

1

2

3

4

5

6

　排序的基本概念和方法

　插入排序

　交换排序

　选择排序

　归并排序

　基数排序

Contents

老师
一、直接插入排序
二、折半插入排序
三、希尔排序

插入排序

基本思想：

即边插入边排序，保证子序列中随时都是排好序的。

 每步将一个待排序的对象，按其关键码大
小，插入到前面已经排好序的一组对象的适
当位置上，直到对象全部插入为止。

直接插入排序（基于顺序查找）

不同的具体实现方法导致不同的算法描述。

折半插入排序（基于折半查找）

希尔排序（基于逐趟缩小增量）

最简单的排序法！

插入排序

一、直接插入排序

排序过程：整个排序
过程为n-1趟插入，即
先将序列中第1个记录
看成是一个有序子序
列，然后从第2个记录
开始，逐个进行插入，
直至整个序列有序。

【13】, 6, 3, 31, 9, 27, 5, 11
【6, 13】, 3, 31, 9, 27, 5, 11
【3, 6, 13】, 31, 9, 27, 5, 11
【3, 6, 13，31】, 9, 27, 5, 11
【3, 6, 9, 13，31】, 27, 5, 11
【3, 6, 9, 13，27, 31】, 5, 11
【3, 5, 6, 9, 13，27, 31】, 11
【3, 5, 6, 9, 11，13，27, 31】

例（13，6，3，31，9，27，5，11）

0 1 2 3 4 5 6
i=2 i=3 i=5i=4 i=6

252525 494949 252525*** 161616 08080808
初态：

完成!

将序列存入顺序表L中，将L.r[0]作为哨兵

（21，25，49，25*，16，08）
*表示后一个25

一、直接插入排序

有序序列R[1..i-1]

R[i]

 无序序列 R[i..n]

1.插入排序的基本思想
：

有序序列R[1..i] 无序序列 R[i+1..n]

一、直接插入排序

2.插入排序的基本步骤

在R[1..i-1]中查找R[i]的插入位置，
R[1..j].key R[i].key< R[j+1..i-1].key；

01
OPTION

02
OPTION

03
OPTION

将R[j+1..i-1]中的所有记录均后移一个位置；

将R[i] 插入到R[j+1]的位置上。

一、直接插入排序

从R[i-1]向前进行顺序查找，监视哨设置在R[0]

if(L.r[i].key<L.r[i-1].key){

 R[0] = R[i]; // 设置“哨兵” R[i] = R[i-1];
 for (j=i-2; R[0].key<R[j].key; --j) R[j+1] = R[j];

j

R[i]

i-1
插入位置

直接插入排序

关键字大于R[i].key的记录向后移动

循环结束表明R[i]的插入位置为 j+1
L.r[j+1]=L.r[0]; //插入到正确位置

void InsertSort(SqList ＆L)
 {int i,j;
 for(i=2;i<=L.length;++i)
 if(L.r[i].key<L.r[i-1].key)//将L.r[i]插入有序子表
 { L.r[0]=L.r[i]; // 复制为哨兵
 L.r[i]=L.r[i-1];
 for(j=i-2; L.r[0].key<L.r[j].key;--j)

 L.r[j+1]=L.r[j]; // 记录后移
 L.r[j+1]=L.r[0]; //插入到正确位置
 }
 }

一、直接插入排序

3.算法分析

• 设对象个数为n，则执行n-1趟
• 比较次数和移动次数与初始排列有关

最好情况下：
　每趟只需比较 1 次，不移动
　总比较次数为 n-1

for(i=2;i<=L.length;++i)
 if(L.r[i].key<L.r[i-1].key)

一、直接插入排序

最坏情况下：第
i 趟比较i次，移
动i+1次。

3.算法分析

2
)1)(2(

2






nni
n

i

比较次数:

2
)1)(4()1(

2






nni
n

i移动次数:

if(L.r[i].key<L.r[i-1].key) {
 L.r[0]=L.r[i]; // 复制为哨兵
 L.r[i]=L.r[i-1];
 ……
 L.r[j+1]=L.r[0]; //插入到正确位置 }

一、直接插入排序

• 若出现各种可能排列的概率相同，则可取最好情况和最坏情
况的平均情况；

• 平均情况比较次数和移动次数为n2/4。

•时间复杂度为 o(n2)

•空间复杂度为 o(1)

•是一种稳定的排序方法

0 1 2 3 4 5

3.算法分析一、直接插入排序

折半插入排序

直接插入排序

 减少关键字间的比较次数

在插入 r[i] 时，利用折半查找法寻找 r[i] 的插
入位置。

3.算法分析一、直接插入排序

21 25 49 25 16 08

low

high

i=2

二、折半插入排序

21 25 49 25 16 08

low

highm

i=3

二、折半插入排序

21 25 49 25 16 08

low

highm

21 25 49 25 16 08

low/m

high

i=4

二、折半插入排序

21 25 4925 16 08

low highm

21 25 4925 16 08

low/m

high

i=5

二、折半插入排序

21 25 492516 08

low high

m

21 25 492516 08

low highm

i=6

21 25 49251608

二、折半插入排序

void BInsertSort (SqList &L)

 { for (i = 2; i <= L.length ; ++i)

 { L.r[0] = L.r[i]; low = 1 ; high = i-1 ;

 while (low <= high)

 { m = (low + high) / 2 ;

 if (L.r[0].key < L.r[m]. key) high = m -1 ;

 else low = m + 1;

 }

 for (j=i-1; j>=high+1; - - j) L.r[j+1] = L.r[j];

 L.r[high+1] = L.r[0];

 }

 } // BInsertSort

二、折半插入排序

折半查找比顺序查找快
，所以折半插入排序就
平均性能来说比直接插
入排序要快。

1.算法分析

它所需要的关键码比较次数
与待排序对象序列的初始排
列无关，仅依赖于对象个数
。在插入第 i 个对象时，需
要经过  log2i  +1 次关键
码比较，才能确定它应插入
的位置 。

二、折半插入排序

当 n 较大时，总
关键码比较次数
比直接插入排序
的最坏情况要好
得多，但比其最
好情况要差。

在对象的初始排列已
经按关键码排好序或
接近有序时，直接插
入排序比折半插入排
序执行的关键码比较
次数要少。

折半插入排序的
对象移动次数与
直接插入排序相
同，依赖于对象
的初始排列。

1.算法分析二、折半插入排序

• 减少了比较次数，但没有减少移动次数；
• 平均性能优于直接插入排序。

空间复杂
度为 o(1)

是一种稳定
的排序方法

时间复杂
度为 o(n2)

1.算法分析二、折半插入排序

三、希尔排序

算法思想的出发点：

直接插入排序在基本有序时，效率较高；
在待排序的记录个数较少时，效率较高。

基本思想：

先将整个待排记录序列分割成若干子序列,分别进行
直接插入排序，待整个序列中的记录“基本有序”
时，再对全体记录进行一次直接插入排序。

三、希尔排序

子序列的构成不是简单地
“逐段分割”将相隔某个增
量dk的记录组成一个子序列
让增量dk逐趟缩短（例如依
次取5,3,1）直到dk＝1为止。

小元素跳跃式前移
最后一趟增量为1时，
序列已基本有序平
均性能优于直接插
入排序。

优点技巧

38

例：关键字序列 T=(49，38，65，97, 76, 13, 27, 49*，55, 04）

0 1 2 3 4 5 6 7 8 9 10
49 38 65 97 76 13 27 49* 55 04初态：

第1趟 (dk=5)

第2趟 (dk=3)

第3趟 (dk=1)

49 1313 4938 2765 49*97 5576 0427 38 65 49* 9755

13 55

7604

5513 27 042704 4949* 4949* 7638 76 65 65 9797

5513 2704 4949* 38 76 65 9713 27 04 49* 76 97

r[i]

ü dk 值较大，子序列中对象较少，速度较快；

ü dk 值逐渐变小，子序列中对象变多，但大多数对象已基本有
序，所以排序速度仍然很快。

三、希尔排序

void ShellSort(SqList &L，int dlta[]，int t){

 //按增量序列dlta[0…t-1]对顺序表L作Shell排序

 for(k=0；k<t；++k)

 　ShellInsert(L，dlta[k])；

　 　//增量为dlta[k]的一趟插入排序

} // ShellSort

dk值依次装在dlta[t]中

三、希尔排序

void ShellInsert(SqList &L，int dk) {

for(i=dk+1；i<=L.length； ++ i)

 if(r[i].key < r[i-dk].key) {

 r[0]=r[i]；

 for(j=i-dk; j>0 &&(r[0].key<r[j].key); j=j-dk)

 r[j+dk]=r[j]；

 r[j+dk]=r[0]；

 }

}

//对顺序表L进行一趟增量为dk的Shell排序，dk为步长因子

//开始将r[i] 插入有序增量子表

//暂存在r[0]

//关键字较大的记录在子表中后移

//在本趟结束时将r[i]插入到正确位置

三、希尔排序

•时间复杂度是n和d的函数：

•空间复杂度为 o(1)

•一种不稳定的排序方法

O(n1.25）～O（1.6n1.25）—经验公式

ü如何选择最佳d序列，目前尚未解决；
ü最后一个增量值必须为1，无除1以外的公因子；
ü不宜在链式存储结构上实现。

三、希尔排序

小结

1. 直接插入排序
2. 折半插入排序
3. 希尔排序

